Prof. Kotlyar Alexander DNA nanolab


                                        AFM image of DNA molecules attached to Avidin  (bright spots) aligned on the surface                                          

Affiliation:           Biochemistry & Molecular Biology, The George S.Wise Faculty of Life Sciences
Tel:                     (972)-3-6407138
Fax:                    (972)-3-6406834
Email:                 s2shak@tau.ac.il
Postal Address: Dept. Biochemistry & Molecular Biology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel




DNA – based Organic Nano Wires


DNA is a fascinating soft material that naturally expresses two of the three main features required from molecular nanoelectronic components, namely recognition and specific structuring (sequence, length). The third additional property that is needed in order to implement DNA-derivatives for electrical device applications is conductivity. The central objective of this multidisciplinary project is development of DNA-based conductive nanowires and nanodevices for nanoelectronics. 

The first goal of the work is synthesis of double-stranded [1], triple–stranded [2]  and G4-DNA [3, 4] nanowires was conducted using DNA Polymerase. We have demonstrated that this enzyme is capable of extending short double-stranded (ds) blunt-ended oligonucleotides composed of only several base pairs yielding very long (up to several microns) ds polymers [1]  

We have demonstrated guanine quadruplex (G4-DNA) [4] that composed of four G-strands have higher electrical polarizability [6] and conductance [7] versus natural double-stranded DNA. These G4-nanowires will be assembled into complex two-dimensional and three-dimensional DNA architectures and integrate functional units along with other molecular electronic components yielding interconnected networks, DNA-based nano-devices and nano-circuits.  This will lead us to realization of the main goal of this research i.e. the creation, by self-assembly, DNA-based nano-scale transistors and devices and that can be used to build computer chips and form the basis of a new type of information processing architecture.   

References

[1] A. Kotlyar, N. Borovok, T. Molotsky, L. Fadeev, M. Gozin "In Vitro synthesis of uniform Poly(dG)-Poly(dC) by Klenow exo-fragment of Polymerase I.", Nucleic Acid Research 33, 525 (2005);

[2] A. Kotlyar, N. Borovok, T. Molotsky, D. Klinov, B. Dwir, E.Kapon "Synthesis of novel poly(dG)-poly(dG)-poly(dC) triplex structure by Klenow Exo- fragment of DNA Polymerase I " Nucleic Acid Research 33, 6515 (2005);

[3] A. Kotlyar, N. Borovok, T. Molotsky, H. Cohen, E. Shapir, D. Porath "Novel Long Monomolecular G4-DNA Nanowires", Adv. Mater. 17, 1901 (2005);

[4]  N. Borovok, N, Iram, D. Zikich, J. Ghabboun, G. Livshits D. Porath, A. Kotlyar  "Assembling of G-strands into novel tetra-molecular parallel G4-DNA nanostructures using avidin-biotin recognition" Nucleic Acid Research 36, 5050 (2008);

[5] I. Lubitz, N. Borovok, A.B. Kotlyar "Interaction of monomolecular G4-DNA nanowires with TMPyP: evidence for intercalation" Biochemistry, 46, 12925 (2007):

[6] G.I. Livshits, J. Ghabboun, N. Borovok, A.B. Kotlyar and D. Porath  Comparative Electrostatic Force Microscopy of Tetraand Intramolecular G4DNA (Adv. Mater. 29/2014) Advanced Materials 26 , 5067 (2014);

[7] G.I. Livshits, A. Stern, D. Rotem, N. Borovok, G. Eidelshtein, A. Migliore, E. Penzo, S. J. Wind, R. Di Felice, S. S. Skourtis, J. C. Cuevas, L. Gurevich, A. B. Kotlyar and D. Porath "Long-range charge transport in single G4-DNA molecules." Nature Nanotechnology 9, 1040-1046 (2014).

AFM Imaging - your youtube channel